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Dispersion and birefringence in a synchrotron-emitting gas
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Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, Sydney 2006, Australia
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The response tensor for a highly relativistic, magnetized electron gas is evaluated by performing the inte-
grals over gyrophase and pitch angle using the method of stationary phase. Only the transverse components are
considered explicitly. The anti-Hermitian part is expressed in terms of the Airy functiar) A46d its deriva-
tive and integral, and is shown to reproduce the known formulas for synchrotron absorption. It is shown that
the full tensor is obtained by the replacement Z\G Ai(z) +i1Gi(z), where Gig) is a generalized Airy
function. A simple form for the high-frequency response is derived for a power-law distribution of particles.
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PACS numbes): 52.60+h, 95.30.Jx, 95.85.Bh

[. INTRODUCTION chrotron absorption exactly. The resulting expression for the
response tensor is applied to a power-law distribution of rela-
A distribution of highly relativistic electronf_orentz fac- tivistic particles.
tor y>1) in a magnetic field emits and absorbs through the
synchrotron process. Such a synchrotron-emitting gas may Il. THE RESPONSE TENSOR
be regarded as a highly relativistic plasma, with its own char- ) ) )
acteristic dispersion and birefringence. The properties of the In @ standard 4-tensor notatig4], the linear response is
natural modes of such a medium influence the polarization ofiescribed by the relatiofb] J*(k) = a*,(k) A”(k) between
radiation passing through it; if the natural modes are linearljthe induced 4-current)(k) and the 4-potentialA(k), as
polarized they can cause a partial conversion of linear intdunctions ofk=(w,k). The particles are described by their
circular polarization, as in a quarter-wave plate. The circudistributionF(p) in eight-dimensional phase spd&. Two
larly polarized component of the radiation from some syn-alternative expressions for the response tensor in this nota-
chrotron sources is small but observable. There is a smalion are derived using a forward scattering method and the
intrinsic component of circular polarization but its frequency Vlasov method, respectively. Both may be written in terms
dependence is not consistent with the simplest interpretatiofif integrals along the orbits of the particles.
of the data[1]. A possible alternative explanation, which is ~ The orbit of a particle is described by=X(7) with
the motivation for the present investigation, is partial converx*=(t,x) (units with c=1) so that the 4-velocity is
sion of linear into circular polarization as a propagation ef-u(7)=X(7), where the dot denotes differentiation with re-
fect. Although the response tensor for a synchrotron-emittingpect to the proper timer. In a magnetostatic field
gas was investigated in this connection, the existing treatr 4 =B+, B=1/2F}"F,,. the orbit may be written as
ments are unsatisfactory: R¢2] used a method that failed
to preserve th_e_ analytic_rela_tion between the Hermi_ti_an and XE(7) = XE+t4(T)Ug, , UH(r)=t*(r)Ug,, (1)
the anti-Hermitian partgimplied by the causal condition
and this invalidates the important check that the antiyynerey  andu, describe the initial conditions. Solving the
Hermitian part reproduces the known formulas for synchro- . . : R . !
tron absorption; Ref[3] argued incorrectly that the natural equation of motlormu”(r)_—qFO u,() for a particle with
modes are circularly polarized, and hence failed to treat thE12rged and rest masm gives
terms that imply the dominant linear polarization correctly. :
In this paper an alternative method is used to derive the tﬂy(r):grwﬁL g/“,SH’lQoT 7]]wvcosﬂoq- @
response tensor for a synchrotron-emitting gas. The method | L Qq
is based on the properties of synchrotron emission. Relativ-
istic beaming implies that the radiation received by a distanwith Qo=[q|B/m, »=gq/|q|, g{’=-f**f,", and gf”
observer is only from particles with pitch angte within =g*’—gt’.
O(y~ 1) of the angled of the line of sight, and within a In this notation, the forward scattering method gives
gyrophase angl®(y 1) of the phase at which the particle is
moving directly toward the observer. As a consequence, in- q? % )
tegrals over gyrophase and pitch angle, in the general expreQL’”(k)=mf d4D(T)F(D)f d¢ explik[X(7)=X(7= &)1}
sion for response tensor, are dominated by contributions 0

from ranges of these variables ©{ y~ 1. Such integrals are X Ta(€)ku(r) G#(k,u(7))ku(r— &)

well suited to evaluation by the method of the stationary

phase. It is found here that this method preserves the analytic XGPY(k,u(t—¢)), 3
properties of the response tensor, and and it is shown that the

anti-Hermitian part reproduces the known formulas for syn- THY(E)=tF"(§) —t*"(0), 4
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kAu?+k*u* k2 utu” factor, and throughu®(7), u”(7—¢), ku(7), andku(r—¢).
GH*(k,u)=g""— TR kwZ (5)  These various terms are expanded in powers pf did only
the lowest order terms are retained. The specific terms that
and the Vlasov method gives appear in the integrands i(8) and (6) are summarized in
Appendix A.

v N2 4 *
(k=g J' dp(7) fo dg u(7) lll. EVALUATION BY STATIONARY PHASE

x ekIX(D=X(r=O][ky(7— £)g*’ — k*uP(7— &)] The resulting integrals over gyrophase and pitch angle in
Egs.(3) and(6) may be written in the generic form
- g IF(p)
Xt (17— &) 0P (6) K 1 szd J'l . "
= cosy
am(0))o O7) g0l

where the integrals ovgr(7)=mu(7) depend onr through . o
the gyrophaseb= ¢+ Q7. The two forms(3) and (6) are XK(¢,a, &)X X801 (10

related by a partial integration. The final expressions derived . . .
below from them are similarly connected by a partial inte-With ¢=¢o+Qo7. The phase factor in Eqé3) and(6) is
gration, which provides a useful check on the results. K[X(7)—X(7— )]

Choosing a specific frame, referred to as the plasma
frame, the integral in Eq(6) may be written as over

1
dp®d¢ dcosx dp||p|?, wherea is the pitch angle. The inte- =—{y(w—|k|lv)Qoé+ y|klv[1—coga—6)]
. 0 QO
gral over eithep® or |p| may be performed over th& func-
tion in the relation, F(p)=2ma&(p®~m?)f(p), between —lk|v sina sing[sing—sin(¢p—Qo&)1}.  (1D)

F(p) and the distribution functiori(p) in six-dimensional _ o _
phase space. The energy spectiN(w) is also used below, On setting the derivative of the phagkl) with respect to
and the relations between the various distributions are ¢ equal to zero, the condition for the stationary phase with

respect tog reduces to
F(p)=2mnd(p?—m?)f(|p|) ¢(e),

cosp=coq ¢p—Qy¢). (12
N(y)=4mm3y?v f(ymv), (7)
One solution of Eq(12) is ¢= g+ Qo7=1/20&. There is
o o a second solution, which contributes equally in the follow-
47TJ' dp| |p|2f(|p|)=f dy N(y)=n, ing; this is taken into account simply by retaining only the
0 ! one solution and multiplying the result by 2. On expanding
about this point of stationary phase, Efjl) gives

11
EjildCOSa d)(a)—l, (8) k[X(’T)_X(T_ g)]

where n is the number density in the plasma frame, and 1
¢(a) the pitch angle distributionThe assumption that the =~ 0 Vo= |kv)Qoé+ yklv[1-coga—6)]
distribution is separable may be relaxed simply at the ex-

e . . . 2
pense of complicating the notatiorChoosing to integrate . . E B } 2.3
over |p|=ymv, and writing p°=my, the derivative in Eq. * Ikl sin o sin 6 2 ¢ 2905 Qo724 1
(6) becomes (13)
i d " . . .
ku(7)G* (k,u(7)t,A(7) a_pﬁ The condition for stationary phase with respecitds
. (Qo)°
~[ku(r) T'—K uV(r)]i i sinfa—0)=a,, a1= 7 sind co9, (14

my dy

where only the correction to first order in small quantities is
> —, (9 retained. As with the gyrophase angle, there are two solu-
my“v® da tions that contribute equally, and one may retain only the

- solutiona= 6+ a4 and include another overall factor of 2 to
with a#(7) =d[u”(7)]/da, and whereu is the 4-velocity of  take account of the other solution.

—[ku(r)a"(7) —ka(r)u”(7)]

the plasma frame. It is convenient to write
In the following only the transverse component of the
response tens@B) or (6) is considered. The transverse plane Y(w—|k|v) y|k|v sirfe
is chosen to be the 12-plane, with the 1-axis along the com- Y= oé, 2= 0, b= T80, (15)

ponent of the magnetic field3, orthogonal tok, and the
2-axis orthogonal to botB andk. The integrands in bottB) and to change variables t6¢=¢—&/2, Sa=a— 0—a;.
and(6) depend on the proper timesandé through the phase Then Eq.(13) reduces to
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2 v _ v _ v
KIX(7)—X(7— &)]=ay+ by3+4b T(‘S“) magf k) = a*"(k) = (k). (18

The transverse part of the high frequen&f+0) response
of any unmagnetized plasma reduce$ b

2
+4by snd (5(1)) (16)
i . i , .
In the integrand of Eq(10) one makes the replacement ok %_Ef d*pF(p)g” :_w’Z)O g, (19)

Qor=38p+13y, a=da+ 0+ a;.

The specific integrals of the fornfil0) that appear in
evaluating Egs(3) and (6) lead to the following replace-
ments inside the integrands:

with u,v=1,2, and wherewy, is the proper plasma fre-
quency.
The components of the response tensor may be expressed
sina in terms of integrals of the form
((8a)?y—i SirPhA, W<(5¢)2>Hm,
(20)

I(m(a,b):J dy y“exr{lay+|§by3 )
0

((8a)*)— —3sirf A2, (S )<(5¢)4>_> 3A2,

sing Some relevant properties of these functions are discussed in
the next section.
A 1 17 For the forward-scattering forr8) the result is
e ) (02 [ N(%)
- . . . at’(k)y=— dy —— J*"(a,b), (22

The additional powers of that appear in the denominator in Mo v
view of Axy~! lead to somey integrals that are dominated
by the contribution from lower limity=0. Such terms are J*a,b)=4bl1V(a,b)—a,
associated with the nonmagnetic part of the response, as may
be seen by noting that at sufficiently high frequencies, the J?%(a,b)=4bIV(a,b)+ £ia21®(a,b)+ 2 a,
ratio (o/w becomes negligible, and the response must re-
duce to that of an unmagnetized plasma. 12 2((1) _ 20 41(0)

The method developed here should not be expected to IHab)=—3 7 co[gia’l(ab)~ Fal®(ab)
give the unmagnetized part of the response accurdafEhe —2il-Y(a,b)+2i]+g(o)[— 2al®(a,b)
model in which a fixed observer see pulses of radiation from
a spiraling charge is not applicable to an unmagnetized sys- —2il"Y(a,b)+i 1}, (22)

tem) It follows that the magnetized part of the response,
which is of interest here, may be isolated by subtracting thevith  J?(a,b)=—-J'%a,b) and with g(#)=tand
unmagnetized party§ " (k), @' (0)] $(0). For the Vlasov form6) the result is

at?(K) = af)(K) + afy)(K), (23

2
) 9°¢(6)Qg dNW| ,,
“fty)(k):—Tf dy yo )z, M

(3 7 cod)[—g(0)il "H(a,b)],

P00 [ N
2 0= 000 [y S

hit —alt"Y(a,b)—bl¥(a,b)

h22| _ —al"Y(a,b)—3bI™M(a,b) (24)

h2 Ly cosf[(2+g(6)il “V(a,b)+ 2al®(a,b)—i ]
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with h?'=—h?2 Partially integrating the forni23) with re- Iml™(a,b) , Rd™(a’,b)
i ' 1 da '

spect toy (assumingax1/y andbe«y) reproduces Eq21) ") ) ()¢ ar

. . Rd '™ (a,b) r_ —Iml'*"(a’,b) |-
with Eqg. (22). However, some care needs to be taken with ™ a-—a
the constant terms id'%(a,b) andJ?)(a,b); these terms are 27
associated with the limig=0, and hence with the unmagne-
tized part of the response. The unmagnetized part is novhere’P denotes the Cauchy principal value.
given correctly by either Eq21) with Eq. (22) or by Eq. The real and imaginary parts of the functid®(a,b) are
(23) with Eq. (24). (They are incorrect by factors of 2 and related to the Airy function$8]
— 2, respectively, in the asymptotic limit considered be)ow. L
This inconsistency may be attributed to an inadequate treat- o _f“ 1.3
ment of the singular terms in the limit—0. This inconsis- Al(2)= mJo dt codztt 5%,
tency may be avoided by subtracting the unmagnetized part (28)
of the response using E(L8), and it is then straightforward _ 1 (= .
to treat the unmagnetized part of the response using the GI(Z)=;J dt sin(zt+ 3t3),
theory for an unmagnetized plasma. 0

respectively. One has
IV. PROPERTIES OF THE RESPONSE FUNCTIONS

The response tensor in the forrfdl) and (23) involve 10(a,b)=wb~ VY Ai(2)+iGi(2)],
three plasma dispersion function§?(a,b) with n=—1, 0,
1. These functions are defined by EQO) for n=0. For
negativen, the definition(20) may be modified so that the 1D(a,b)=—imb YA’ (2) +iGi'(2)],
functions are nonsingular by integrating the relation
dI(™(a,b)/da=il "*Y)(a,b) between 0 andh to generate
the function forn=—1 from that forn=0, and so on.

z
These functions satisfy a recursion relation I(‘”(a,b):iwf dz'[Ai(z')+iGi(z")], z=a/bs.
0
(29
bI"*¥(a,b)=—al""P(a,b)+i(n+1)I(a,b) The parts that involve the function Adf contribute to the
anti-Hermitian part of the response tensor, and the parts that
for n# -1, involve the function Gig) contribute the Hermitian part of

the response tensor.
The Airy function Ai(z) can be represented as a Bessel
(2) —_ (0 +i function of order 1/3, and in the case of relevance to syn-
bI**(a,b) al™(a,b)+i, (25 chrotron emission these are Macdonald functions. The rel-

. . . L evant representations in terms of Bessel functions are
which follows by partially integrating in Eq20). The recur- P

sion relation(25) is used to reexpress all tHé"(a,b) in

terms of 1<"Y(a,b), 119(a,b), and1™M)(a,b) in Egs. (22) 112

and (24). _ _ Rel(9(a,b)= —( B) Kya(R),
Forn=<0, 1(M(a,b) as defined by E¢(20) would be sin- V3

gular, due to the divergencewt 0. The divergent terms are

associated with the unmagnetized part of the response. These

terms are subtracted using E48). It is then convenient to 1la

redefinel (" (a,b) for n<0 so that all the functions are non- Iml(a,b) = Bb Kas(R),

singular. This may be achieved by integrating the relation

dI(M(a,b)/da=il (""1)(a,b), between 0 and. This gives

Iml(l)(a,b)=—% J:dt Kua(t), (30

»d
|<—1>(a,b)=f —y{ex;{iay+i 1by’1-1} (26
oY with R=2a%2/302

for n=—1, and a further such integration may be used to
definel((a,b) for n=—2.

The functiond ("(a,b) are causal functions. This follows A check on the validity of this theory is that the anti-
from the fact that the parametaris proportional to the fre- Hermitian part ofa*”(k) reproduces the known formulas for
guencyw, andy is a linear function ofprope) time, so that  synchrotron absorption. The anti-Hermitian part of E2f)
Eq. (20) definesl (M(a,b) as the temporal Fourier transform is inserted in the absorption coefficienty*”(k)
of a function that vanishes for negative times. Hence=i(uq/w d|k|/dw)a™*"(k). Using Eq.(30) and the recur-
1(M(a,b) must satisfy the Kramers-Kronig relations sion relations for the Macdonald functions to write

V. SYNCHROTRON ABSORPTION
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_L dt K1/3(t)+K2/3(R):f:dt Ksa(t) —Ky(R), (31)
one finds
7 VB 1a02Q 0 b( 6)sing (= df(ymv) [ (=
[ﬂk)] =- MOquOjZ( Jl dy yzvl’z% R fR dt K5/3<t>1K2,3(R>}, (32
A7 \[3BuoqPQod( 6)sing = 2i 7 codd w df(ymv)
1201y — _ 112
Y2(K) P Jd yiv (mmsme) [2+g<e>]det K1,3<t>+2K1,3<R)} 4
® f(ym
—g(a)fRdt Kys(t) 4 v)], (33

where the approximationk|=w is assumed except in where the logarithmic term is assumed to dominate in
w—|k|lv=w/2{?. The result(32) for v—1 reproduces a J'¥a,b). The ratio 1 to 7 for the diagonal components of the
well-known expression for the synchrotron absorption coefmagnetized part of the response is evidently a characteristic
ficient for the linearly polarized componeni9] derived feature of the high-frequency response of a synchrotron-
from the emission coefficient by appealing to detailed bal-emitting gas.
ance; Eq(33) reproduces a known form for the small circu-  Besides the requirement that the formulas for synchrotron
larly polarized component of synchrotron absorptidf], absorption be reproduced, a further check on the validity of
which was also derived appealing to detailed balance. the result421) and(23) is to use it to evaluate the response
tensor for a relativistic thermal distribution. The result may
VI. THE HERMITIAN PART OF THE RESPONSE TENSOR then be compared with the appropriate limit of the exact
o ) ) expression for a thermal distribution of arbitrary temperature
Approximations available for Gx) are relevant to the derived by Trubnikov{11]. The highly relativistic limit of
evaluation of the Hermitian part. Some known results arerrypnikov's tensor is derived elsewhef&2], where it is
summarized in Appendix B. The case of most interest is highshown that the two results agree, with the exception that the
frequencies, corresponding ta>1. In this case the argument of the logarithm in the off-diagonal term is deter-
asymptotic expansions of the plasma dispersion functionfined only to within a factor of order unity in either deriva-

give tion.

. The case of most interest in astrophysical plasmas is a

i 2b 1 L

10(a,b)=—| 1+ = 1D(a,b)=—— power-law distribution,
) a a3 ) 1 a21
1"V (a,b)=—Ina, (39 N(y) [Noyﬁ for y,<y<wv,
Y)= .

with a=w/2Qyy. Omitting the terms associated with the 0 otherwise,

unmagnetized part of the response, the leading contributions
to the magnetized part of the response in &2) are

DIy =i AT #1,
O:[n(ﬁ M (y1 y2 ") or B (36)

Q _
Jll(a,b)= _ % ZO y3sin207 Jzz(a,b)=7Jll(a,b), n In( ’}/2/'}’1) for B=1,

(35
wheren is the number density of the relativistic particles.
Inserting Eq.(36) into Eq. (21) with Eq. (35 gives, for
’ B>2 and72> Y1,

Iab)=1 i ¢
,b)=3 in cosf[1+g(6)]In 200y

oK) | =T T am W M g | 7

( all( k)

who , 20Pn(0) 0, p-1 (1)

i
a'¥(k)=— 57 cosf [1+g(6)]

2 _
gneg(0) Qg B—1 1n( ® ) @7

m ?,B—ZZ QOgy,Sind
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where the unmagnetized contributi¢h9) is now included. sociated with the unmagnetized part of the response. This
For <2, the y integral for the 11 and 22 components is technical difficulty is avoided here hyp) subtracting the un-
dominated by the largest for which the approximations are magnetized part, cf. Eq18), so that the remaining magne-
valid. Assuming that the approximatio(84) applies for tized part has no singularitie) using unmagnetized theory
a>1 and that the functions are negligible fax 1, the v to calculate the unmagnetized part of the response,(end
integral is cut off aty=(w/Qsing)?. Hence for3<2 and  redefiningl (" Y(a,b), cf. Eq.(20), to remove the divergent
y1<(0/Q4sing)?< v,, Eq. (37) is replaced by term. Consistent results are then obtained for the diagonal
terms. The off-diagonal term contains a logarithm associated

1) = w_f,()+2q2n¢(0) Q_g 20 B-1 with 10" (a,b), and this term is determined only to within a
(k)= Mo 3m w2 S 2—-8 factor of order unity in the argument of the logarithm.

(2-p)/2

w
Qgsing

ot

The high-frequency response is evaluated for the case of a
power-law particle distribution, which is the case of most
astrophysical interest. The result is similar in form to that

L u i _ obtained in[2], but differs from it by numerical factors.
with a(k)=7a"(k); t?/(z? a1(k) is unchanged. At higher These numerical differences may be attributed to an incorrect
frequencies, @/Q¢sind)"“>y,, the frequency dependence relation between the Hermitian and anti-Hermitian parts in

of the diagonal terms reverts to that in E§7).

[2]. The natural wave modes of such a plasma are nearly

The general form of the resul(87) and(38) is consistent  |inearly polarized, as found ifi2] and contrary to a claim
with those found by Sazond2], but the numerical coeffi- made in[3].

cient of the diagonal terms are different.

The properties of the two natural wave modésbeled
+) of a plasma with response tensor of the form found here,
cf. Eq. (37) or (38), include the dispersion relation
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APPENDIX A

The specific quantities that appear in the integrands in
Egs.(3) and(6), after expanding in powers of quantities of

order 14, include

. T.el+ie? .
+ Mmov -
TV (8) Qg L7y —y |
all_ aZZI[(all_ a22)2+4a12a21] 1/2
T.= — (40) _
2ia |k|?sir?g y*
kak/sTa'g(f):Q— 5
One has|a'?y<|a'l— a?4, except for very small sid, so 0
that the natural modes are nearly linearly polarized. The ef- IK|sing
fect of an admixture of cold plasma on the wave modes is kBTM’B(g)z Q (—cospty3, — L py?),
discussed elsewhefé?2]. 0
, |k|sin &
VIl. CONCLUSIONS kaTon (g): QO (_C089 %y3’% 7 yZ)'

The main result of this paper is that the method of station-
ary phase may be used to treat the response of a highly
relativistic electron gas. It is shown that the anti-Hermitian
part of the resulting response tensor reproduces the known
formulas for synchrotron absorption exactly. Moreover, un-
like an earlier treatmerj], the present method preserves the

causal properties of the relevant plasma dispersion functions, ku(r)=Q,

so that this check confirms the validity of the Hermitian part
(to within terms whose Hilbert transform is zérdnother
check on the validity of the results follows by evaluating the

ka(7) = ylk|v Sa, p(a)= $(6)

U’“’(T)Z yo[ Sa+ ay;— 3sin 6(5p+ 1 )2,
— 7 sin§(d¢+ 3 )],

(Sa+ay)?® sina
4

sirfg  sing (y+5¢)2H,

cosyl

a+4b

1+(a—0)g(h)

response tensor for a relativistic thermal distribution and sing |’
comparing the result with the appropriate limit of Trubnik- 9
ov's response tens$i.2]. NN _ . co

A technical difficulty arises in the theory presented sina=sin § 1+ (=) sing |’ (AD)

here due to certain terms being singular. Mathemati-
cally, these appear through the integral~')(a,b)

Also, the termku(7)u” in Eq. (9) does not contribute to the

=[5dy y lexdi(ay+1/3by®) ] and, physically, they are as- transverse component; after expanding it, the first term
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in ku(7)a”(7)—ka(r)u”(7) is negligible; and to lowest or- z _ 1 2y+In3 2
derka(r) does not depend on J dz'Gi(z')~ | Inz+ ——%—— 55+ |,
APPENDIX B: APPROXIMATIONS TO HERMITIAN PART wherey=0.577, ... is Euler's constant. The expansion for
The approximations available for G are for large and z<1 gives[1]]
SE?II Z. T:PL1§ leading terms in the asymptotic expansion for 1[318 323 2
=1 are[13] Gi(2)= —| — (413 + —I'(5/3) z— =+---|,
1/1 2 1 1 2 4 2
. , (B2)
~— =+ .. ~— ==+ ..
Gi(z) g i ) Gi'(2) 77( 2 )
(B1)  with [8] Gi(0)=0.205, GI(0)=0.149.
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