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Dispersion and birefringence in a synchrotron-emitting gas

D. B. Melrose
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, Sydney 2006, Australia

~Received 24 April 1997!

The response tensor for a highly relativistic, magnetized electron gas is evaluated by performing the inte-
grals over gyrophase and pitch angle using the method of stationary phase. Only the transverse components are
considered explicitly. The anti-Hermitian part is expressed in terms of the Airy function Ai(z), and its deriva-
tive and integral, and is shown to reproduce the known formulas for synchrotron absorption. It is shown that
the full tensor is obtained by the replacement Ai(z)→Ai( z)1 iGi(z), where Gi(z) is a generalized Airy
function. A simple form for the high-frequency response is derived for a power-law distribution of particles.
@S1063-651X~97!03309-6#

PACS number~s!: 52.60.1h, 95.30.Jx, 95.85.Bh
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I. INTRODUCTION

A distribution of highly relativistic electrons~Lorentz fac-
tor g@1) in a magnetic field emits and absorbs through
synchrotron process. Such a synchrotron-emitting gas
be regarded as a highly relativistic plasma, with its own ch
acteristic dispersion and birefringence. The properties of
natural modes of such a medium influence the polarizatio
radiation passing through it; if the natural modes are linea
polarized they can cause a partial conversion of linear
circular polarization, as in a quarter-wave plate. The cir
larly polarized component of the radiation from some sy
chrotron sources is small but observable. There is a sm
intrinsic component of circular polarization but its frequen
dependence is not consistent with the simplest interpreta
of the data@1#. A possible alternative explanation, which
the motivation for the present investigation, is partial conv
sion of linear into circular polarization as a propagation
fect. Although the response tensor for a synchrotron-emit
gas was investigated in this connection, the existing tre
ments are unsatisfactory: Ref.@2# used a method that faile
to preserve the analytic relation between the Hermitian
the anti-Hermitian parts~implied by the causal condition!,
and this invalidates the important check that the a
Hermitian part reproduces the known formulas for synch
tron absorption; Ref.@3# argued incorrectly that the natura
modes are circularly polarized, and hence failed to treat
terms that imply the dominant linear polarization correctl

In this paper an alternative method is used to derive
response tensor for a synchrotron-emitting gas. The me
is based on the properties of synchrotron emission. Rela
istic beaming implies that the radiation received by a dist
observer is only from particles with pitch anglea within
O(g21) of the angleu of the line of sight, and within a
gyrophase angleO(g21) of the phase at which the particle
moving directly toward the observer. As a consequence,
tegrals over gyrophase and pitch angle, in the general exp
sion for response tensor, are dominated by contributi
from ranges of these variables ofO(g21). Such integrals are
well suited to evaluation by the method of the stationa
phase. It is found here that this method preserves the ana
properties of the response tensor, and and it is shown tha
anti-Hermitian part reproduces the known formulas for s
561063-651X/97/56~3!/3527~7!/$10.00
e
ay
r-
e

of
y
o
-
-
all

n

-
-
g
t-

d

i-
-

e

e
od
v-
t

-
s-
s

y
tic
he
-

chrotron absorption exactly. The resulting expression for
response tensor is applied to a power-law distribution of re
tivistic particles.

II. THE RESPONSE TENSOR

In a standard 4-tensor notation@4#, the linear response is
described by the relation@5# Jm(k)5am

n(k)An(k) between
the induced 4-current,J(k) and the 4-potential,A(k), as
functions ofk5(v,k). The particles are described by the
distributionF(p) in eight-dimensional phase space@6#. Two
alternative expressions for the response tensor in this n
tion are derived using a forward scattering method and
Vlasov method, respectively. Both may be written in term
of integrals along the orbits of the particles.

The orbit of a particle is described byx5X(t) with
xm5(t,x) ~units with c51) so that the 4-velocity is
u(t)5Ẋ(t), where the dot denotes differentiation with r
spect to the proper timet. In a magnetostatic field
F0

mn5B fmn, B51/2F0
mnF0mn , the orbit may be written as

Xm~t!5x0
m1tmn~t!u0n , um~t!5 ṫmn~t!u0n , ~1!

wherex0 andu0 describe the initial conditions. Solving th
equation of motionmu̇m(t)5qF0

mnun(t) for a particle with
chargeq and rest massm gives

tmn~t!5gi
mnt1g'

mn
sinV0t

V0
2h f mn

cosV0t

V0
, ~2!

with V05uquB/m, h5q/uqu, g'
mn52 f ma f a

n, and gi
mn

5gmn2g'
mn .

In this notation, the forward scattering method gives

amn~k!5
q2

mE d4p~t!F~p!E
0

`

dj exp$ ik@X~t!2X~t2j!#%

3Tab~j!ku~t! Gam
„k,u~t!…ku~t2j!

3Gbn
„k,u~t2j!…, ~3!

Tmn~j!5tmn~j!2tmn~0!, ~4!
3527 © 1997 The American Physical Society
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3528 56D. B. MELROSE
Gmn~k,u!5gmn2
kmun1knum

ku
1

k2 umun

~ku!2 , ~5!

and the Vlasov method gives

amn~k!52 iq2E d4p~t! E
0

`

dj um~t!

3eik[X~t!2X~t2j!]@ku~t2j!gan2kaub~t2j!#

3 ṫa
b~t2j!

]F~p!

]pb , ~6!

where the integrals overp(t)5mu(t) depend ont through
the gyrophasef5f01V0t. The two forms~3! and ~6! are
related by a partial integration. The final expressions deri
below from them are similarly connected by a partial in
gration, which provides a useful check on the results.

Choosing a specific frame, referred to as the plas
frame, the integral in Eq.~6! may be written as ove
dp0df dcosa dupuupu2, wherea is the pitch angle. The inte
gral over eitherp0 or upu may be performed over thed func-
tion in the relation, F(p)52md(p22m2) f (p), between
F(p) and the distribution functionf (p) in six-dimensional
phase space. The energy spectrumN(g) is also used below
and the relations between the various distributions are

F~p!52mnd~p22m2! f ~ upu!f~a!,

N~g!54pm3g2v f ~gmv !, ~7!

4pE
0

`

dupu upu2f ~ upu!5E
1

`

dg N~g!5n,

1

2E21

1

dcosa f~a!51, ~8!

where n is the number density in the plasma frame, a
f(a) the pitch angle distribution.~The assumption that th
distribution is separable may be relaxed simply at the
pense of complicating the notation.! Choosing to integrate
over upu5gmv, and writing p05mg, the derivative in Eq.
~6! becomes

ku~t!Gan
„k,u~t!…ṫa

b~t!
]

]pb

5@ku~t! ũn2k ũ un~t!#
1

mg

]

]g

2@ku~t!an~t!2ka~t!un~t!#
1

mg2v2

]

]a
, ~9!

with am(t)5d@um(t)#/da, and whereũ is the 4-velocity of
the plasma frame.

In the following only the transverse component of t
response tensor~3! or ~6! is considered. The transverse pla
is chosen to be the 12-plane, with the 1-axis along the c
ponent of the magnetic field,B, orthogonal tok, and the
2-axis orthogonal to bothB andk. The integrands in both~3!
and~6! depend on the proper timest andj through the phase
d
-

a

d

-

-

factor, and throughum(t), un(t2j), ku(t), andku(t2j).
These various terms are expanded in powers of 1/g, and only
the lowest order terms are retained. The specific terms
appear in the integrands in~3! and ~6! are summarized in
Appendix A.

III. EVALUATION BY STATIONARY PHASE

The resulting integrals over gyrophase and pitch angle
Eqs.~3! and ~6! may be written in the generic form

^K&~j!5
1

4pf~u!
E

0

2p

dfE
21

1

dcosaf~a!

3K~f,a,j!eik[X~t!2X~t2j!] , ~10!

with f5f01V0t. The phase factor in Eqs.~3! and ~6! is

k@X~t!2X~t2j!#

5
1

V0
$g~v2ukuv !V0j1gukuv@12cos~a2u!#

2gukuv sina sinu@sinf2sin~f2V0j!#%. ~11!

On setting the derivative of the phase~11! with respect to
f equal to zero, the condition for the stationary phase w
respect tof reduces to

cosf5cos~f2V0j!. ~12!

One solution of Eq.~12! is f5f01V0t51/2V0j. There is
a second solution, which contributes equally in the follo
ing; this is taken into account simply by retaining only th
one solution and multiplying the result by 2. On expandi
about this point of stationary phase, Eq.~11! gives

k@X~t!2X~t2j!#

5
1

V0
H g~v2ukuv !V0j1gukuv@12cos~a2u!#

1gukuv sin a sin uF1

2S f2
1

2
V0j D 2

1V0
2j3/24G J .

~13!

The condition for stationary phase with respect toa is

sin~a2u!5a1 , a15
~V0j!3

24
sinu cosu, ~14!

where only the correction to first order in small quantities
retained. As with the gyrophase angle, there are two s
tions that contribute equally, and one may retain only
solutiona5u1a1 and include another overall factor of 2 t
take account of the other solution.

It is convenient to write

y5V0j, a5
g~v2ukuv !

V0
, b5

gukuv sin2u

8V0
, ~15!

and to change variables todf5f2j/2, da5a2u2a1.
Then Eq.~13! reduces to
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56 3529DISPERSION AND BIREFRINGENCE IN A . . .
k@X~t!2X~t2j!#5ay1
by3

3
14by

~da!2

sin2u

14by
sina

sinu
~df!2. ~16!

In the integrand of Eq.~10! one makes the replaceme

V0t5df1 1
2y, a5da1u1a1.

The specific integrals of the form~10! that appear in
evaluating Eqs.~3! and ~6! lead to the following replace
ments inside the integrands:

^~da!2&→ i sin2uD,
sina

sinu
^~df!2&→ iD,

^~da!4&→23sin4uD2, S sina

sinu D 2

^~df!4&→23D2,

D5
1

8by
. ~17!

The additional powers ofy that appear in the denominator
view of D}y21 lead to somey integrals that are dominate
by the contribution from lower limit,y50. Such terms are
associated with the nonmagnetic part of the response, as
be seen by noting that at sufficiently high frequencies,
ratio V0 /v becomes negligible, and the response must
duce to that of an unmagnetized plasma.

The method developed here should not be expecte
give the unmagnetized part of the response accurately.~The
model in which a fixed observer see pulses of radiation fr
a spiraling charge is not applicable to an unmagnetized
tem.! It follows that the magnetized part of the respon
which is of interest here, may be isolated by subtracting
unmagnetized part,a0

mn(k),
ay
e
-

to

s-
,
e

amag
mn ~k!5amn~k!2a0

mn~k!. ~18!

The transverse part of the high frequency (k2'0) response
of any unmagnetized plasma reduces to@7#

a0
mn'2

q2

mE d4pF~p!gmn52vp0
2 gmn, ~19!

with m,n51,2, and wherevp0 is the proper plasma fre
quency.

The components of the response tensor may be expre
in terms of integrals of the form

I ~n!~a,b!5E
0

`

dy ynexpF iay1 i
1

3
by3G . ~20!

Some relevant properties of these functions are discusse
the next section.

For the forward-scattering form~3! the result is

amn~k!52
q2f~u!V0

mv E dg
N~g!

g2v
Jmn~a,b!, ~21!

J11~a,b!5 4
3 bI ~1!~a,b!2a,

J22~a,b!54bI ~1!~a,b!1 8
3 ia2I ~0!~a,b!1 5

3 a,

J12~a,b!52 1
2 h cosu$@ 16

9 ia2I ~1!~a,b!2 20
9 aI ~0!~a,b!

22i I ~21!~a,b!12i #1g~u!@2 4
3 aI ~0!~a,b!

22i I ~21!~a,b!1 i 1
3 #%, ~22!

with J21(a,b)52J12(a,b) and with g(u)5tanu
f8(u)/f(u). For the Vlasov form~6! the result is
amn~k!5a~g!
mn ~k!1a~a!

mn ~k!, ~23!

a~g!
mn ~k!52

q2f~u!V0

mv E dg gv
d

dgFN~g!

g2v Ghmn,

a~a!
12 ~k!5

q2f~u!V0

mv E dg
N~g!

g
~ 1

2 h cosu!@2g~u!i I ~21!~a,b!#,

S h11

h22

h12D 5S 2aI ~21!~a,b!2bI ~1!~a,b!

2aI ~21!~a,b!23bI ~1!~a,b!

1
2 h cosu@~21g~u!!i I ~21!~a,b!1 4

3 aI ~0!~a,b!2 i 4
3 #
D , ~24!
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3530 56D. B. MELROSE
with h2152h12. Partially integrating the form~23! with re-
spect tog ~assuminga}1/g andb}g) reproduces Eq.~21!
with Eq. ~22!. However, some care needs to be taken w
the constant terms inJ11(a,b) andJ22(a,b); these terms are
associated with the limity50, and hence with the unmagne
tized part of the response. The unmagnetized part is
given correctly by either Eq.~21! with Eq. ~22! or by Eq.
~23! with Eq. ~24!. ~They are incorrect by factors of 2 an
22, respectively, in the asymptotic limit considered below!
This inconsistency may be attributed to an inadequate tr
ment of the singular terms in the limity→0. This inconsis-
tency may be avoided by subtracting the unmagnetized
of the response using Eq.~18!, and it is then straightforward
to treat the unmagnetized part of the response using
theory for an unmagnetized plasma.

IV. PROPERTIES OF THE RESPONSE FUNCTIONS

The response tensor in the forms~21! and ~23! involve
three plasma dispersion functions,I (n)(a,b) with n521, 0,
1. These functions are defined by Eq.~20! for n>0. For
negativen, the definition~20! may be modified so that th
functions are nonsingular by integrating the relati
dI (n)(a,b)/da5 i I (n11)(a,b) between 0 anda to generate
the function forn521 from that forn50, and so on.

These functions satisfy a recursion relation

bI ~n13!~a,b!52aI ~n11!~a,b!1 i ~n11!I ~n!~a,b!

for nÞ21,

bI ~2!~a,b!52aI ~0!~a,b!1 i , ~25!

which follows by partially integrating in Eq.~20!. The recur-
sion relation~25! is used to reexpress all theI (n)(a,b) in
terms of I (21)(a,b), I (0)(a,b), and I (1)(a,b) in Eqs. ~22!
and ~24!.

For n<0, I (n)(a,b) as defined by Eq.~20! would be sin-
gular, due to the divergence aty50. The divergent terms ar
associated with the unmagnetized part of the response. T
terms are subtracted using Eq.~18!. It is then convenient to
redefineI (n)(a,b) for n,0 so that all the functions are non
singular. This may be achieved by integrating the relat
dI (n)(a,b)/da5 i I (n11)(a,b), between 0 anda. This gives

I ~21!~a,b!5E
0

`dy

y
$exp@ iay1 i 1

3 by3#21% ~26!

for n521, and a further such integration may be used
defineI (n)(a,b) for n522.

The functionsI (n)(a,b) are causal functions. This follow
from the fact that the parametera is proportional to the fre-
quencyv, andy is a linear function of~proper! time, so that
Eq. ~20! definesI (n)(a,b) as the temporal Fourier transform
of a function that vanishes for negative times. Hen
I (n)(a,b) must satisfy the Kramers-Kronig relations
h

ot

t-

rt

he

se

n

o

e

S ImI ~n!~a,b!

ReI ~n!~a,b!D 5
1

p
PE da8

a82a S ReI ~n!~a8,b!

2ImI ~n!~a8,b! D ,

~27!

whereP denotes the Cauchy principal value.
The real and imaginary parts of the functionI (0)(a,b) are

related to the Airy functions@8#

Ai ~z!5
1

pE0

`

dt cos~zt1 1
3 t3!,

~28!

Gi~z!5
1

pE0

`

dt sin~zt1 1
3 t3!,

respectively. One has

I ~0!~a,b!5pb21/3@Ai ~z!1 iGi~z!#,

I ~1!~a,b!52 ipb21/3@Ai 8~z!1 iGi8~z!#,

I ~21!~a,b!5 ipE
0

z

dz8@Ai ~z8!1 iGi~z8!#, z5a/b1/3.

~29!

The parts that involve the function Ai(z) contribute to the
anti-Hermitian part of the response tensor, and the parts
involve the function Gi(z) contribute the Hermitian part o
the response tensor.

The Airy function Ai(z) can be represented as a Bes
function of order 1/3, and in the case of relevance to s
chrotron emission these are Macdonald functions. The
evant representations in terms of Bessel functions are

ReI ~0!~a,b!5
1

A3
S a

bD 1/2

K1/3~R!,

ImI ~1!~a,b!5
1

A3

a

b
K2/3~R!,

ImI ~21!~a,b!52
1

A3
E

R

`

dt K1/3~ t !, ~30!

with R52a3/2/3b1/2.

V. SYNCHROTRON ABSORPTION

A check on the validity of this theory is that the ant
Hermitian part ofamn(k) reproduces the known formulas fo
synchrotron absorption. The anti-Hermitian part of Eq.~23!
is inserted in the absorption coefficientgmn(k)
5 i (m0 /v duku/dv)aAmn(k). Using Eq.~30! and the recur-
sion relations for the Macdonald functions to write
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2E
R

`

dt K1/3~ t !1K2/3~R!5E
R

`

dt K5/3~ t !2K2/3~R!, ~31!

one finds

F g11~k!

g22~k!G52
A3m0q2V0f~u!sinu

8mv2 E
1

`

dg gzv1/2
d f~gmv !

dg FRE
R

`

dt K5/3~ t !7K2/3~R!G , ~32!

g12~k!52
4pA3m0q2V0f~u!sinu

8mv2 E
1

`

dg gzv1/2 S 2ih cosu

3zv1/2sinu
D H F @21g~u!#E

R

`

dt K1/3~ t !12K1/3~R!G d f~gmv !

dg

2g~u!E
R

`

dt K1/3~ t !
f ~gmv !

g J , ~33!
e
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ar
ig

on

e
io

in
he
istic
on-

ron
of

se
ay
act
ure

the
er-
-

is a

s.
where the approximationuku5v is assumed except in
v2ukuv5v/2z2. The result ~32! for v→1 reproduces a
well-known expression for the synchrotron absorption co
ficient for the linearly polarized components@9# derived
from the emission coefficient by appealing to detailed b
ance; Eq.~33! reproduces a known form for the small circ
larly polarized component of synchrotron absorption@10#,
which was also derived appealing to detailed balance.

VI. THE HERMITIAN PART OF THE RESPONSE TENSOR

Approximations available for Gi(z) are relevant to the
evaluation of the Hermitian part. Some known results
summarized in Appendix B. The case of most interest is h
frequencies, corresponding toa@1. In this case the
asymptotic expansions of the plasma dispersion functi
give

I ~0!~a,b!5
i

aS 11
2b

a3 D , I ~1!~a,b!52
1

a2 ,

I ~21!~a,b!52 lna, ~34!

with a5v/2V0g. Omitting the terms associated with th
unmagnetized part of the response, the leading contribut
to the magnetized part of the response in Eq.~22! are

J11~a,b!52 2
3

V0

v
g3sin2u, J22~a,b!57J11~a,b!,

~35!

J12~a,b!5 1
2 ih cosu@11g~u!# lnS v

2V0g D ,
f-

l-

e
h

s

ns

where the logarithmic term is assumed to dominate
J12(a,b). The ratio 1 to 7 for the diagonal components of t
magnetized part of the response is evidently a character
feature of the high-frequency response of a synchrotr
emitting gas.

Besides the requirement that the formulas for synchrot
absorption be reproduced, a further check on the validity
the results~21! and~23! is to use it to evaluate the respon
tensor for a relativistic thermal distribution. The result m
then be compared with the appropriate limit of the ex
expression for a thermal distribution of arbitrary temperat
derived by Trubnikov@11#. The highly relativistic limit of
Trubnikov’s tensor is derived elsewhere@12#, where it is
shown that the two results agree, with the exception that
argument of the logarithm in the off-diagonal term is det
mined only to within a factor of order unity in either deriva
tion.

The case of most interest in astrophysical plasmas
power-law distribution,

N~g!5H N0g2b for g1,g,g2

0 otherwise,

N05H n~b21!/~g1
12b2g2

12b!21 for bÞ1,

n ln~g2 /g1! for b51,
~36!

where n is the number density of the relativistic particle
Inserting Eq.~36! into Eq. ~21! with Eq. ~35! gives, for
b.2 andg2@g1,
S a11~k!

a22~k!D 5
vp0

2

m0
1

2q2nf~u!

3m

V0
2

v2 sin2u
b21

b22
g1S 1

7D ,

a12~k!52
i

2
h cosu @11g~u!#

q2nf~u!

m

V0

v

b21

b22

1

g1
lnS v

V0g1sinu D , ~37!
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3532 56D. B. MELROSE
where the unmagnetized contribution~19! is now included.
For b,2, the g integral for the 11 and 22 components
dominated by the largestg for which the approximations ar
valid. Assuming that the approximation~34! applies for
a.1 and that the functions are negligible fora,1, the g
integral is cut off atg5(v/V0sinu)1/2. Hence forb,2 and
g1,(v/V0sinu)1/2,g2, Eq. ~37! is replaced by

a11~k!5
vp0

2

m0
1

2q2nf~u!

3m

V0
2

v2 sin2u
b21

22b

3~g1
12b2g2

12b!21S v

V0sinu D ~22b!/2

, ~38!

with a22(k)57a11(k); the a12(k) is unchanged. At highe
frequencies, (v/V0sinu)1/2.g2, the frequency dependenc
of the diagonal terms reverts to that in Eq.~37!.

The general form of the results~37! and~38! is consistent
with those found by Sazonov@2#, but the numerical coeffi-
cient of the diagonal terms are different.

The properties of the two natural wave modes~labeled
6) of a plasma with response tensor of the form found he
cf. Eq. ~37! or ~38!, include the dispersion relation

k25k6
2 5

m0

2
$a111a226@~a112a22!214a12a21#1/2%,

~39!

where arguments (k) are omitted, and the polarization ve
tors are

e6
m 5

T6e11 ie2

~11T6
2 !1/2

,

T65
a112a227@~a112a22!214a12a21#1/2

2ia12
. ~40!

One hasua12u!ua112a22u, except for very small sinu, so
that the natural modes are nearly linearly polarized. The
fect of an admixture of cold plasma on the wave modes
discussed elsewhere@12#.

VII. CONCLUSIONS

The main result of this paper is that the method of stati
ary phase may be used to treat the response of a hi
relativistic electron gas. It is shown that the anti-Hermiti
part of the resulting response tensor reproduces the kn
formulas for synchrotron absorption exactly. Moreover, u
like an earlier treatment@2#, the present method preserves t
causal properties of the relevant plasma dispersion functi
so that this check confirms the validity of the Hermitian p
~to within terms whose Hilbert transform is zero!. Another
check on the validity of the results follows by evaluating t
response tensor for a relativistic thermal distribution a
comparing the result with the appropriate limit of Trubni
ov’s response tensor@12#.

A technical difficulty arises in the theory present
here due to certain terms being singular. Mathem
cally, these appear through the integralI (21)(a,b)
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sociated with the unmagnetized part of the response. T
technical difficulty is avoided here by~a! subtracting the un-
magnetized part, cf. Eq.~18!, so that the remaining magne
tized part has no singularities,~b! using unmagnetized theor
to calculate the unmagnetized part of the response, and~c!
redefiningI (21)(a,b), cf. Eq. ~20!, to remove the divergen
term. Consistent results are then obtained for the diago
terms. The off-diagonal term contains a logarithm associa
with I (21)(a,b), and this term is determined only to within
factor of order unity in the argument of the logarithm.

The high-frequency response is evaluated for the case
power-law particle distribution, which is the case of mo
astrophysical interest. The result is similar in form to th
obtained in @2#, but differs from it by numerical factors
These numerical differences may be attributed to an incor
relation between the Hermitian and anti-Hermitian parts
@2#. The natural wave modes of such a plasma are ne
linearly polarized, as found in@2# and contrary to a claim
made in@3#.
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APPENDIX A

The specific quantities that appear in the integrands
Eqs. ~3! and ~6!, after expanding in powers of quantities o
order 1/g, include
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Also, the termku(t) ũn in Eq. ~9! does not contribute to the
transverse component; after expanding in 1/g, the first term
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in ku(t)an(t)2ka(t)un(t) is negligible; and to lowest or
der ka(t) does not depend ont.

APPENDIX B: APPROXIMATIONS TO HERMITIAN PART

The approximations available for Gi(z) are for large and
small z. The leading terms in the asymptotic expansion
z@1 are@13#
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whereg50.577, . . . is Euler’s constant. The expansion fo
z!1 gives@11#
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with @8# Gi(0)50.205, Gi8(0)50.149.
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